2021

MATHEMATICS — HONOURS

Paper : CC-7

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

 $\mathbb R$ denotes the set of real number.

Group – A

(Marks : 20)

Answer the following multiple choice questions with only one correct option. Choose the correct option and justify:

 (1+1)×10

(a) The singular solution of the equation,
$$y = \frac{2}{3}x\frac{dy}{dx} - \frac{2}{3x}\left(\frac{dy}{dx}\right)^2$$
, $x > 0$ is

(i)
$$y = \pm x^2$$
 (ii) $y = \frac{x^3}{6}$ (iii) $y = x$ (iv) $y = \frac{x^2}{6}$

(b) Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the differential equation $x^2y''(x) - 2xy y'(x) - 4y(x) = 0$ for $x \in [1, 10]$. Consider the Wronskian $w(x) = y_1(x)y_2'(x) - y_2(x)y_1'(x)$. If w(1) = 1, then w(3) - w(2) equals to (i) 1 (ii) 2 (iii) 3 (iv) 5.

- (c) If x² + xy² = C, where C∈ ℝ, is the general solution of the exact differential equation M(x, y)dx + 2xy dy = 0, then M(1, 1) is
 (i) 3 (ii) 2 (iii) 4 (iv) 1.
- (d) If $x^h y^k$ is an I.F. of the differential equation, y(1 + xy)dx + x(1 xy)dy = 0, then the ordered pair (h, k) is equal to
 - (i) (-2, -2) (ii) (-2, -1) (iii) (-1, -2) (iv) (-1, -1).

(e) The integrating factor of the differential equation $\frac{dy}{dx}(x\log x) + y = 2\log x$ is

(i) $\log x$ (ii) e^x (iii) $\log(\log x)$ (iv) x.

Please Turn Over

(f) Singular solution of the equation $y = px + \frac{a}{p}$ where $p \equiv \frac{dy}{dx}$, is

(i)
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$
 (ii) $y^2 = -4ax$ (iii) $y^2 = 4ax$ (iv) $x^2 = 4ay$.

(2)

- (g) Using variation of parameters the Wronskian of the following equation
 - $y'' 2y' + 1 = (x+1)e^{2x}$ is (i) xe^{2x} (ii) e^{2x} (iii) e^x (iv) e^{-2x} .
- (h) Particular integral of $(D^2 3D + 2)y = e^{5x}$ is
 - (i) $\frac{e^{5x}}{12}$ (ii) $\frac{e^{5x}}{13}$ (iii) $\frac{e^{5x}}{14}$ (iv) $\frac{e^{5x}}{15}$.
- (i) The double limit $\lim_{(x, y) \to (0, 0)} \frac{xy}{x^2 + y^2}$
 - (i) exists and equal to 0 (ii) exists and equal to 1
 - (iii) exists and equal to 2 (iv) does not exist.
- (j) Consider the vector field $\vec{F} = (ax + y + a)\hat{i} + \hat{j} (x + y)\hat{k}$, where 'a' is a constant. If \vec{F} curl $\vec{F} = 0$, then the value of a is
 - (i) -1 (ii) 0 (iii) 1 (iv) $\frac{3}{2}$.

Group – B (Marks : 30)

Answer *any six* questions.
$$5 \times 6$$

- Find the family of curves such that, at any point of any member of the family, the x-intercept of the corresponding tangent line equals the ordinate at that point.
- 3. (a) Solve $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$.
 - (b) Check whether the following equation is exact or not :

$$\left(2x^2 + 3x\right)\frac{d^2y}{dx^2} + (6x+3)\frac{dy}{dx} + 2y = (x+1)e^x.$$
3+2

5

- 4. Find the general solution of the differential equation $y(4x + y)dx 2(x^2 y)dy = 0$.
- 5. Reduce the equation $xp^2 2yp + x + 2y = 0$ to Clairant's form by using the substitution $x^2 = u$ and y x = v and then solve it.
- 6. Solve by the method of variation of parameters, the equation $\frac{d^2y}{dx^2} 4y = \sin hx.$ 5
- 7. Solve the equation $\frac{d^2y}{dx^2} + (x-1)^2 \frac{dy}{dx} 4(x-1)y = 0$ in series about the point x = 1. 5
- 8. Solve for x and y:

$$\frac{dx}{dt} + \frac{2}{t}(x-y) = 1$$

$$\frac{dy}{dt} + \frac{1}{t}(x+5y) = t$$
5

9. Solve by the method of undetermined coefficients

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 8x^2 + 3 + 2\cos 2x.$$
 5

10. Find a power series solution of the initial value problem

$$(x^{2} - 1)\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + xy = 0$$

$$y(0) = 4$$

$$y'(0) = 6.$$
5

11. Solve by the method of variation of parameters, the equation $\frac{d^2y}{dx^2} + a^2y = \sec ax.$ 5

Group – C (Marks : 15)

Answer *any three* questions. 3×5

- 12. Let f(x, y) be continuous at an interior point (a, b) of domain of definition of f and $f(a, b) \neq 0$. Show that f(x, y) maintains same sign in a neighbourhood of (a, b). What can you say about the sign of f in a neighbourhood of (a, b) if f(a, b) = 0? 3+2
- 13. Examine for existence of maxima or minima of the function $h(x, y) = x^2 + y^2 + (x + y + 1)^2$. 5

Please Turn Over

(3)

14. Find the maximum or minimum of the function f(x, y) = xy, subject to the condition 5x + y = 13, using the method of Lagrange's Multipliers. 5

(4)

- 15. For the function $f(x, y) = (|xy|)^{\frac{1}{2}}$, show that both f_x and f_y exist at (0, 0) but is not differentiable at (0, 0). 2+3
- 16. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x, y) = \frac{xy^2}{x + y}, \text{ if } x + y \neq 0$$

= 0 if $x + y = 0$
Then find the value of $\left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y \partial x}\right)$ at the point (0, 0).

5